Se llama así a la función y= f(x) = ax, cuando a>0, es decir una potencia donde la variable independiente es el exponente, siendo la base una constante positiva.
Tendremos, por ejemplo, f(3/2)= a3/2. Tomando la raíz aritmética, la función queda unívocamente definida para todo x racional, y su variación en este campo resulta de lo siguiente:
Las potencias de exponente racional de los números positivos mayores(menores) que uno, son mayores(menores) que uno si el exponente es positivo, y son menores(mayores) que uno si es negativo. En ambos casos crecen(decrecen) al crecer el exponente.
Si a=1, se reduce a la función constante f(x) =1 y no la consideramos como función exponencial.
Con lo establecido anteriormente, podemos enunciar las siguientes propiedades de la función exponencial:
Función logarítmica
Se llama así a la función inversa a la exponencial, que existe en base a lo demostrado anteriormente:x = ð (y) = loga y, definida para 0<y<+ð, si a>0 y að1.
Escribamos ahora la función de otra forma:
y = ð (x) = loga x,
donde llamamos de nuevo x a la variable independiente e y a la función, y obtenemos de la gráfica de la función exponencial, la gráfica de la función logarítmica por simetría de primer y tercer cuadrantes.
Por las propiedades de los logaritmos vistas previamente enunciamos las siguientes:
lim logax = + ð (a>1) lim logax = ðð (0<a<1)
x →ð ð x →ð ð
Un video miralo y gana un chocolate:
Fuente:http://html.rincondelvago.com/funcion-logaritmica-y-exponencial.html
No hay comentarios:
Publicar un comentario